Friday, November 19, 2010

Identifying special situations in factoring

  • Difference of two squares
    • a2- b= (a + b)(a - b)
      • (x + 3)(x − 3)
      • (5x − 1)(5x + 1)
      • (x3 − 3)(x3 + 3)
  • Trinomial perfect squares
    • a+ 2ab + b= (a + b)(a + b) or (a + b)2
      • x2 + 2x + 1 = 0
      • x2 + 4x + 2 = 0
      • a- 2ab + b= (a - b)(a - b) or (a - b)2
      • 3 examples
  • Difference of two cubes
    • a3 - b3
      • 3 - cube root 'em
      • 2 - square 'em
      • 1 - multiply and change
        • 3 examples
  • Sum of two cubes
    • a3 + b3 
      • 3 - cube root 'em
      • 2 - square 'em
      • 1 - multiply and change
        • 3 examples
  • Binomial expansion
    • (a + b)3 = Use the pattern
    • (a + b)4 = Use the pattern

Saturday, November 13, 2010

Endbehaviors / Naming Polynomials

Linear Equation - y=mx+b
1 Degree
0 Turns
When M is positive - 
Raises to the Right, Falls to the Left.
domain → +∞, range → +∞ (rises on the right)
domain → -∞, range → -∞ (falls on the left)

When M is negative -
Raises to the Left, Falls to the Right.
domain → -∞, range → +∞ (rises on the left)
domain → +∞, range → -∞ (falls on the right)

Quadratic Equations - y=ax²+bx+c
2 Degree
1 Turn
(a+b)(c+d)

When A is positive - 
Raises Right, Raises Left
 domain → +∞, range → +∞ (rises on the right)
domain → -∞, range → -∞ (falls on the left)  


When A is negative -
Falls Left, Falls Right
 domain → +∞, range → -∞ (falls on the right)
domain → -∞, range → -∞ (falls on the left)  
Naming Polynomials
-Numbers of terms is always 1 less than degree

:Degree:

0- Constant 
1- Linear
2- Quadratic 
3- Cubic
4- Quartic
5- Quintic 
6 to ∞- nth Degree 

:Terms:


Monomial 
Binomial 
Trinomial 
Quadrinomial 
Polynomial